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Let ~t be the critical exponent associated with the probability that I independent 
N-step ordinary random walks, starting at nearby points, are mutually avoiding. 
Using Monte Carlo methods combined with a maximum-likelihood data 
analysis, we find that in two dimensions .~2 = 0.6240 + 0.0005 _+ 0.0011 and ~3 = 
1.4575 __ 0.0030_+ 0.0052, where the first error bar represents systematic error 
due to corrections to scaling (subjective 95 % confidence limits) and the second 
error bar represents statistical error (classical 95% confidence limits). These 
results are in good agreement with the conformal-invariance predictions ~2 = 5/8 
and ~3 = 35/24. 
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1. I N T R O D U C T I O N  

The intersection properties of ordinary random walks have long been of 
interest in probability theory. (1-8) In recent years they have served as a 
valuable test problem for critical phenomena and quantum field theory, 
analogous to but simpler than self-avoiding walks, Ising models, and (/94 
field theories. (9-13/ In addition, they provide a simple model of diffusion 
near an absorbing fractal, (14) and they may describe interacting polymer 
chains of different chemical species in a 0 solvent. (15~ 

In this paper we consider the following problem: Let pl(N) be the 
probability that l (~>2) independent N-step ordinary random walks, start- 
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ing at some specified points xl ,  x2,... , x l in a d-dimensional regular lattice, 
are mutually avoiding. How does pl(N) behave as N ~  oe? 2 

It is known rigorously (2'~6) that 

lim p , ( N ) = ~  c'(xl ..... x , ; d ) > 0  for d > 4  (1.1) 
N~oo [0  for d~<4 

In the borderline dimension d =  4, it has been proven (3 5) that 3 

pz(N) ~ (log N ) -  1/2 x possible log log corrections (1.2) 

and nonrigorous renormalization-group calculations (17) predict that 
pt(N),.~(logN) -t(~-1)/4 For dimension d < 4 ,  one expects a nontrivial 
scaling 

p,(N). ,~N ~ (1.3) 

and for l =  2 this behavior has recently been proven t7) modulo possible 
logarithmic corrections. 4 The critical exponents (t(d) are expected to be 
universal, in the sense that they depend only on l and d (and not on the 
specific lattice or on the starting points xl ,  x2 ..... xt). The best available 
rigorous bounds on (2 are 

d= l(iS): 

d =  2(6'8): 

(2 = 1 (1.4) 

1 1 3 
~ + ~--~--.< (2 < ~ (1.5) 

1 1 
d =  3(3'8): ~ <  (2 < ~  (1.6) 

Also, some rather weak bounds are known on (l for l~> 3. Nonrigorous 
renormalization-group calculations in dimension d = 4 -  e yield the predic- 
tion (17) 

( ,=l(1-1) i( i-  1)(2l- 5) 
- - e  e2 -1"- 0(•  3 ) (1 .7)  

8 32 

2 To avoid trivial cases, we assume henceforth that Xl, x2,... , x l are "sufficiently separated." 
Alternatively, we could modify the definition of p~(N) so as to ignore intersections arising 
from "early" parts of both intersecting walks. 

3 More precisely, what has been proven is that l imu~ ~ [log p2(N)/log Iog N] = --1/2. 
4 More precisely, what has been proven is that (2 --- l i m u -  ~ [ log p2(N)/log N]  exists. Also, 

this exponent (2 equals the exponent for the corresponding continuum (Brownian-motion) 
problem. 
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Since Brownian motion (the scaling limit of ordinary random walk) is 
known to be conformal-invariant, (19) it is natural to suppose that the 
scaling limit of mutually avoiding walks (MAWs) would also be conformal- 
invariant. Indeed, Duplantier and Kwon (2~ have recently used a combina- 
tion of conformaMnvariance arguments and Monte Carlo computations to 
deduce (nonrigorously) the exact critical exponents ~t in dimension d =  2: 
they predict 

4 1 2 -  1 
~'= 2---~ (1.8) 

In Section 2 we briefly recapitulate their argument. 
The principal purpose of this paper is to make a high-precision Monte 

Carlo measurement of the exponents ~2 and ~3 for two-dimensional 
MAWs, in order to test the conformaMnvariance prediction (1.8). In 
Section 3 we explain our methodology; in particular, we explain how the 
problem can be cast in a form allowing the use of maximum-likelihood 
estimation. In Section 4 we present our numerical results: using MAWs of 
length up to Nmax = 50000, we find 

~2 = 0.6240 _+ 0.0005 + 0.0011 (1.9) 

~3 = 1.4575 _+ 0.0030 _ 0.0052 (1.10) 

where the first error bar represents systematic error due to corrections 
to scaling (subjective 95% confidence limits) and the second error bar 
represents statistical error (classical 95% confidence limits). We find 
unexpectedly large corrections to scaling in pz(N), possibly corresponding 
to a correction-to-scaling exponent A in the range ~0.d~0.5. In Section 5 
we discuss briefly our results, and compare them to previous work. (6'2~ 

2. THE C O N F O R M A L - I N V A R I A N C E  A R G U M E N T  

Let ~ be a connected finite graph containing n~ vertices of order l 
(l ~> 1); such a graph has g edges and 5(, loops, where 

e =  Z �89 (2.1) 
l>~1 

s  ~, ( �89 1)n, (2.2) 
l>1 

A ~d-net of N-step mutually avoiding walks (MAWs) is, by definition, a 
mapping that assigns a site in Z a to each vertex of ~ and an N-step walk 
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in Z d (with the appropr ia te  endpoints)  to each edge in ~,  such that  distinct 
walks have no intersections except where required at their endpoints.  5 Let 
Z N ( ~ )  be the number  of distinct such nets (modulo  translation).  6 Then 
Z N ( ~ )  is expected to have the scaling behavior  

Z N ( ~ )  ~ #Ne NY~-  I (2.3) 

as N--+ 0% where # = 2 d  is the coordinat ion  number  of Z a and 7~ is a 
critical exponent .  Moreover ,  Duplant ie r  has argued (~7'2x) (see also ref. 22) 
that  7~ for a general graph can be decomposed  into contr ibut ions f rom 
loops and vertices: 

7 ~ -  1 = - d v S f  + ~ nla l (2.4) 
1~>1 

where v = 1/2 is the size exponent  for ordinary  r a n d o m  walks, and {at}t>~ 
is a new family of  critical exponents;  this is a kind of generalized hyper-  
scaling relation. 7 Applying this formula  to the /-leg star ~ and the /-leg 
"watermelon"  (or " f u s e a u " )  (23'24'21'2~ ~g/ll, we obtain  

- ~ t  = 7 & -  1 = ~i + lal (2.5) 

7 ~ - , -  1 = - d v ( l -  1 ) + 2a ,  (2.6)  

Let us now cons ider / - leg  M A W  watermelons  in which the edges have 
variable numbers o f  steps N1, N2 ..... N l and f i x e d  endpoints X, Y6 Z ~. Let 
L~u>.., N,(X--  Y) be the number  of such MAWs,  and let G t ( X -  Y; fl) be the 
generating function with respect to the fluctuating total  length: 

G t ( X  - y; fl) = ~ flN,+N2+ ---+NI~N1,..., N I ( X  - ~-) (2.7) 
N 1 , . . . ,  N 1 0 

This correlat ion function has a critical point  tic = 1/#, at which the mean  
length diverges. Now,  M A W s  can be represented by a lattice field theory 
(see below), and the generat ing function GI is the two-point  correlat ion 
function at inverse tempera ture  fl of a scalar field opera to r  q~t that  creates 
/-leg vertices: 

~ , ( x -  Y;/~) = <~,(x) ~,(Y)>e (2.8) 

s Alternatively, we could "split" each vertex into a cluster of nearby points, and then impose 
strict mutual avoidance. Indeed, such a modification is required if the graph fr has any 
vertices of order >2d. The critical exponents should be unchanged by any such "local" 
modification. 

6 In dimension d= 2 we consider only planar graphs aj, since otherwise Zu(N ) = 0 for all N. 
7 Identical reasoning holds for nets of walks that are self-avoiding as well as mutually 

avoiding, but #, v, and {0-,}/~ 1 of course take different values. (21"221 
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At criticality, this correlation function decays asymptotically as 

<r I X -  YI 2~, (2.9) 

where x~ is the scaling dimension of ~b~. Then 7 ~  can be related to xt by 
the scaling law 

w,= (d- 2x,)u - ( l -  1) (2.10) 

[This is a generalization of the well-known scaling law ~= (2- t / )v .  The 
term l -  1 arises from the fact that Gt has variable numbers of steps on each 
edge, while ZN(~t/jt) is built from walks of f i x e d  length N.] Combining (2.6) 
and (2.10), we find 

l 
a l= - v x t  + ~ (dv - 1) (2.11) 

Inserting this into (2.5), we conclude that 

~l ~- (X l '~ -  l X l ) Y  - -  l ( d Y  - 1 )  (2.12) 

It suffices, therefore, to compute the anomalous dimensions x~. 
One exponent is easy: for MAWs we have ~1 = 0, hence o1 = 0 and 

X 1 = �89 It follows that ~t 1 1 = ~ x l -  g l ( d -  2). 
To proceed further, we restrict attention to d =  2, and assume that 

MAWs are described by a eonformal field theory (25 27~ with central charge 
c. We then argue as follows: 

(a) We guess that the scalar field ~b t is a primary conformal field of 
weight hr. Then the anomalous dimension xz equals 2hz. [If ~bz were instead 
a secondary field descended from a primary field of weight ht, we would 
have xt = 2(ht + positive integer). ] 

(b) MAWs can be represented (9"~~ by a theory of 1 n-component 
fields ~i (1 ~<i<~l) with quartic interaction Z i~j [q~i] 2 [~jl 2, analytically 
continued to n = 0. For such a zero-component model, the free energy is 
identically zero; and since the finite-size corrections to the free energy in a 
strip of width L are proportional to the central charge c, (28-3~ we conclude 
that c-- 0. 

(c) The pair (c, hz) labels a highest-weight representation of the 
Virasoro algebra. (31-34) At certain special values of the weight h, namely 

h~,C), = ( c - 1 ) + ~ ( r f l + - s f l _ )  2 (2.13) 
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with 

/~_+ = (25 - C) 1/2 -4- (1 - c )  1/2 (2.14) 

r, s integers 7> 1 (2.15) 

the representation of the Virasoro algebra is degenerate. TM 34) In this case 
the correlation functions of the corresponding primary field ~b satisfy linear 
differential equations. (25~ If, in addition,/~ //~+ is a rational number--say, 
~-/t~+ = m/m', where m'~> m ~> 1 are relatively prime integers--then there 
exists a closed operator algebra involving only a finite number of confor- 
real families, namely those given by (2.13) with 

l<~r<~m-1 ,  l<<.s<~m'-I (2.16) 

(see ref. 25). Theories satisfying these two conditions are said to be minimal 
conformal field theories; they can be parametrized by 

6(m - m ' )  2 
c = 1 (2.17) 

ram' 

where m and m' are as above. The minimal models appear to play a 
special role (not yet completely understood (35'36)) in two-dimensional critical 
phenomena. 

(d) Motivated by the above, Duplantier and Kwon (2~ guess that the 
MAW exponents can be obtained from the Kac table (2.13) with c = 0 and 
suitable choices of r, s. However, r and s must in general be chosen outside 
the "minimal block" (2.16). [For two-dimensional self-avoiding walks, an 
Ansatz of this type gives exponents agreeing with those obtained by 
Coulomb-gas methods, in both the dilute ( e = 0 )  (23"21'37) and dense 
( C =  - - 2 )  (24,38) regimes, but in this case one must allow also half-integer 
values of r, s. Fractional values of r, s have been encountered also in 
refs. 39 and 30.] 

(e) It remains to identify the (r, s) pair corresponding to each MAW 
exponent hr. To do this, Duplantier and Kwon (2~ carry out a Monte Carlo 
study of/-star MAWs for l = 2, 3, 4, 5, thereby obtaining an estimate of fit; 
since the possible exponents h~,~ =~ are rather widely spaced, even modest 
accuracy suffices to determine (r, s) and hence ff~ exactly. 8 Duplantier and 
Kwon find that ~=h(o~7~ for the four l values that they 

8in fact, for / = 2  there is a unique value in the c = 0  Kac table (with r, s integer or 
half-integer) that is consistent with the rigorous bound (1.5): it is ~2 = 5/8. Therefore, for 
l = 2  the Monte Carlo study is not even necessary, if the conformal-invariance guess is 
correct. 
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studied, and they make the plausible guess that this formula is correct for 
all I >~ 2. 

Remarks. 1. Many important statistical mechanical models (Ising, 
Potts, etc.) correspond to conformal field theories satisfying ref lec-  
tion posi t iv i ty .  (4c~42) In such cases the representation of the Virasoro 
algebra must be unitary.  These representations have been completely 
classifled(43~6); they are given by {6 } 

c =  l m ( m  + l ) m in teger  ~> 2 

_ (c) [ ( m + l ) r - m s ]  2 - 1  
h - hr, ~, - 4 m ( m  + 1 ) r, s integers, 

l < ~ s < ~ r ~ m - 1  

f c~> l~  
or ~h~>0J 

(2.18) 

In particular, for c = 0 the only unitary representation is the trivial one 
(h = 0). But the MAW and SAW are not  reflection positive, so there is no 
contradiction with the Duplantier-Saleur-Kwon Ansatz. 

2. The argument presented above is in fact a slight variant of the one 
given by Duplantier and Kwon. (2~ We relate the Duplantier-Saleur-Kwon 
Ansatz to the degenerate representations (2.13) [possibly extended a d h o c  

to allow r, s half-integer], while Duplantier and Kwon describe their 
Ansatz as an a d h o c  extension of the discrete unitary series (2.18a). We 
suspect that the former description may give better insight into why the 
Ansatz works. 

3. T H E  M O N T E  C A R L O  M E T H O D  

The most obvious Monte Carlo method for the MAW problem is: 

1. Generate many l-tuples of N-step ordinary random walks 
(ORWs), and test each l-tuple for intersection. The fraction of 
cases that are nonintersecting constitutes an estimate of p t ( N ) .  

2. Repeat step 1 for many values of N. Fit the results to (1.3) to 
obtain an estimate of (l- 

This method works; it was employed by Duplantier and Kwon (2~ with 
N~< 70 to estimate (e, (3, (4, (5 in d =  2. The disadvantage of this method 
is that it is necessary to make many separate simulations, one for each 
value of N. 

A more efficient Monte Carlo method can be based on the Observation 
that the equal-weight probability distributions on N-step ORWs for dif- 
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ferent values of N are consistent: that is, if N < N ' ,  then the restriction to 
the first N steps of the equal-weight distribution on N'-step ORWs gives 
equal weight to each N-step walk. (The corresponding statement for 
self-avoiding walks is false.) It follows that there exists a probability 
measure on the space of infinite-length walks whose restriction to the first 
N steps gives equal weight to each N-step walk, for each N. In other words, 
ordinary random walk is a stochastic process. Moreover, this stochastic 
process has the following property<Z): if o~ 1 and c0 2 are independent 
infinite-length ORWs in Z d (d~<4), then with probability 1, co 1 and c% 
have a nonempty intersection (in fact, they have infinitely many inter- 
sections). 

We can therefore study the MAW problem for all N simultaneously, as 
follows: 

1. Initialize c~1,..., o~ to empty walks (with initial points xl ..... xt, 
respectively). Initialize Y ~ 0. 

2. Independently extend ~o~,..., ~ot by one random step each. Incre- 
ment Y by 1. 

3. Test whether ~ol ..... ~ol are mutually avoiding. If so, go to step 2. If 
not, output the death time Y and halt. 

For d<~ 4, this algorithm is guaranteed to halt (with probability 1), and the 
probability distribution of the death time X is given by 

P ( X  > N) = p,(N) (3.1) 

and hence 

P(JV = N) = q~(N) =- p l ( N -  1) - p,(N) (3.2) 

From (1.3), we have 

q l ( N ) ~ N  -~l+~) as N ~  ~ (3.3) 

In other words, the large-N behavior of the probability distribution of J~ 
is determined exactly (modulo corrections to scaling) in terms of the single 
exponent ~. We have, therefore, a parametric-estimation problem for 
which we can use the method of maximum likelihood ~47'48), as described 
below, to estimate ~l. 

There is one slight snag: If ~t~< 1 (as we know to be the case for l =  2 
in all dimensions), then the death time Y ,  though finite with probability 
1, has infinite mean: 

(JV') = ~ Nq,(N)= ~ (3.4) 
N ~ I  
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This would imply that the mean CPU time per iteration is also infinite--a 
rather unpleasant situation? We therefore modify step 3 of the algorithm to 
impose a cutoff Nma~: 

3'. Test whether COl,..., cot are mutually avoiding. If so: 

a. If ~A ~ < N  . . . .  go to step 2. 
b. If ~ = N . . . .  output the message "Death time > Nm~x" and 

halt. 

If co~ ..... co t are not mutually avoiding, output the death time A/" 
and halt. 

This algorithm has a mean running time that behaves as 

fO(N~m~ ~t) if 0 < ( t < l  

( C P U  t ime)  ~ ( Y )  ~ ~O(log Nm,x) if ( , =  1 (3.5) 
! 

(O(1) if if,> 1 

as Nmax ~ ~ .  The cutoff Nma x can  be chosen to optimize the statistical 
efficiency (see the Appendix). If ~t> 1, we are free to take N .... = ~ .  

The maximum-likelihood method is defined as follows9: Let us assume 
temporarily that the asymptotic form (3.3) is exact for N>~ Nm~,. Then the 
probability distribution of the death time ~ ,  conditional on it being 
between N m i  n and N . . . .  is 

P ( , / V ' = N I  Nmin~,/f~Nmax)=Z((l, Nmin, Nmax) I •  (1+~) (3.6) 

where 

Nmax 

Z(~,,Umin, Xmax)- ~ N (1+~1) (3.7) 
N = Nmi n 

Successive samples Jg~, ~ .... are independent; the probability of observing 
any particular set {~ , . . . ,  ~ } is therefore 

likelihood = l-[ 
1~i<~n 

Nrnin ~< -/V'i ~< Nmax 

Z(~l, Nmin, Nmax)-lx./V]. -(1+~') (3.8) 

(Here the product is taken over only those i for which Nmi n ~ ~/~.~< Nrnax ; 
the walks that die before time Nmi n or after time Nm,• play no role in this 
analysis.) The maximum-likelihood estimate Ct= (I (JV~ ,..., ~ , )  is, by defini- 

9 The maximum-likelihood method was used for similar purposes in a study of self-avoiding 
walks. (49) 

822/61/3-4-15 
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tion, the value of ~ that maximizes the likelihood (3.8). In other words, it 
is the value of ~t that maximizes the probability of observing the particular 
data set {Xll ..... X,} that was in fact observed. Since (3.8) is an "exponen- 
tial family, ''(47'4s) (t is determined by the simple condition 

(log A/') 6 = (log i ~ ' ) o b s  

where we have defined the theoretical mean value 

(3.9) 

(f(Jf'))~l=-- E f(N) N (1 N-(I (3.10) 
N = Nmin i N  = Nmin 

and the observed mean value 

( f ( J f ' ) )  obs ~ E f ( ~ ) /  ~ 1 (3.11) 
l<~ i<~n  ! l<~ i<~n  

Nmin ~ ~ ~< Nmax Nmin ~< ,A/'i ~ Nmax 

The likelihood equation (3.9) is easily solved numerically for fit, e.g., by 
Newton's method. By the general theory of maximum-likelihood estima- 
tion, (47'4s) the probability distribution of C~ is asymptotically Gaussian as 
the sample size n ~ 0% with mean 

(1) 
( ( t )~ ,=  ~t+ O ~ (3.12) 

and variance 

where 

1 o(1)  
var~,((t) - n' var;,(log JV) t- ~7~ (3.13) 

"m.x f t n ' -n  ~ qt(N)= ~ t (3.14) 
N ~ Nmi n l ~ i <~ n 

Nmin ~< o/~i ~< Nmax 

is the expected censored sample size. Note that var((t) depends on the 
unknown "true" value ~; but since this dependence is rather weak, and 
since C~ will be a fairly close estimate of (l (provided n' >> 1), it suffices for 
our purposes to replace ~t by the estimated value (~ when attempting to 
compute error bars for (t. 1~ These error bars are computed (for n' >> 1) by 

10 More rigorously, one would limit oneself to some interval [(t, mJn, (/,ma~] in which the true 
value ~ is assumed to lie, compute the worst possible error bar subject to that assumption, 
and thereby derive a rigorous classical confidence interval for (l subject to the assumption 
that (re [~z.mi., (/ ,max] '  
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assuming the distribution of (l to be Gaussian with mean ~, and variance 
given by (3.13)." A very important feature of this method is that the 
statistical error bars can be estimated prior to performing the Monte Carlo 
experiment. Moreover, it can be proven that in the large-sample limit 
n ~ oo the maximum-likelihood estimator is the optimal estimator, in the 
sense that any other estimator (within a certain very broad class) has larger 
or equal mean-square error at leading order in 1/n. (47'48) Thus, the maxi- 
mum-likelihood method provides an optimal data analysis: it extracts from 
the Monte Carlo data { ~  ..... ~ }  their full content as regards the 
parameter {l. 

We now return to the problem of corrections to scaling. Clearly, (3.3) 
is only the leading term in an asymptotic expansion of qt(N) for large N; 
the renormalization group predicts (s~ that the actual behavior is 

I al a2 b0 bl 
q l ( S ) ~  N -(I+~') ao + ~ + ~ - s  "" + ~ - S T + ~ T - r ~ +  "'" 

e~ c1 1 + NZ---~+~7-~ + .. .  (3.15) 

Here d 1 < zJ 2 < . . .  are correction-to-scaling exponents, and there is an 
infinite spectrum of correction terms of the form 1 / N  mIAl+m2z12+ '"  +mk3~+n, 

where ml, m2,..., ink, n are nonnegative integers. The exponents AI, A2,... 
are believed to be universal among lattices of a given dimension d; the 
amplitudes ao, al,..., bo, b~,..., Co, cl .... depend on the lattice and on the 
initial points xl ,  x2,..., xt. 

The maximum-likelihood analysis described above is based on the 
assumption that (3.3) is exact for N>~Nmin; if (3.15) is correct, then this 
assumption is in error by an amount of order i/Nmin, where 
3 = min(A~, 1). Thus, we expect that the estimates of ~l derived using (3.3) 
likewise have a systematic error of this order (as well as higher-order 
corrections). A useful procedure would then be to perform the analysis for 
a variety of values of Nmin;  to plot (l, together with its purely statistical 
error bars, as a function of Nmi ~ (or of A 1/Nmi . for some guessed A); and 
finally to attempt an extrapolation to Nmi n = oO. Unfortunately, such an 
extrapolation is extremely difficult: as a matter of principle, one must go to 
large enough values of Nm~. so that the subleading corrections to scaling 
are negligible compared to the leading correction; but it is precisely in this 
region that the data become very "noisy" (the statistical error bars grow 

11 For n' >> 1 we can neglect the bias (which is of order 1/n'), since it is much smaller than the 
standard deviation [which is of order 1/(n')m], 
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rapidly with Nmin) , making reliable extrapolation almost impossible. A 
similar difficulty arises if we attempt to make a two-parameter maximum- 
likelihood fit, for example, to the form 

qt(N) ~ N -(~ +~') exp(a /N ~) (3.16) 

with A fixed. (A fit to three or more parameters, such as allowing A to be 
variable, is even more difficult.) We therefore adopt the most primitive 
method (which might be called "zeroth-order extrapolation"): we plot (l 
and its statistical error bars as a function of Nmin, and note the Nmi n value 
at which Ct becomes roughly constant within error bars. The error bars at 
this Nmin value are declared to be the statistical error bars on (1 (classical 
confidence limits); and a subjective estimate of the uncertainty in 
extrapolating to Nmi n =  oo is reported as a systematic error induced by 
corrections to scaling. 

4. N U M E R I C A L  R E S U L T S  

We have implemented the algorithm described in the previous section, 
taking d = 2 and l = 2, 3, with Nma x = 50000. The only nonobvious part  of 
the program is the test for intersection, which we wish to perform in a time 
of order 1 (i.e., independent of N). To do this, we store the current state of 
the walks ~01, (z) 2 . . . . .  (,o l in hash tables (sl) H1, H2 ..... Ht, which are updated 
at each step. We also maintain linear lists of the occupied locations in the 
hash tables; this allows us to clean the tables rapidly at the end. 12 For  l =  2, 
for example, the logic is as follows: 

last l  +-- x l ;  insert Xl in H~ 
last2 ~ x2; insert x2 in H 2 

Y ~ 0  
while JV < Nma x do 

J V ~ - Y +  1 
last 1 ~ last 1 + random step 
if last 1 E H2 then goto finish 
insert last 1 in H~ 
last2 ~ last2 + random step 
if last2 ~ H1 then goto finish 
insert last2 in H2 

endwhile 
print "Death time > Nmax'; clean H~ and H 2 ; halt 

finish: print Y ;  clean H1 and H2;  halt 

12 For a similar use of hash tables, see ref. 52, Section 3.4. 
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Tablel .  Parameters of Our Runs w i t h / = 2  a 

735 

Number of 
Machine pairs ( X 106) PRNG CPU time/pair 

Astronautics ZS-2 310 II 8.5 msec 
Convex C-1 484 III 5.5 msec 
Cyber 205 20 II 3.0 msec 
Elxsi 6400 161 II 19 msec 

VAX 11/785 24 I 55 msec 

a In all cases we took x a = x 2 = 0 and Nma x = 50,000. Note that the mean CPU time per pair 
is strongly dependent on Nm,x [Eq. (3.5)]. 

No te  tha t  we ignore  possible  intersect ions at t ime (0, 0) [-which occur  if 
x l  = x2] ,  but  not  intersect ions at t ime ( t l ,  0) or  (0, t2). The hash- table  size 
M should  be at  least  several  t imes Nmax; we used M = 247,879. 

The pa rame te r s  of  our  ! = 2 runs are shown in Table  I; in all cases we 
took  x l  = x2 = 0 and  N . . . .  = 50000. In to ta l  we genera ted  sl ightly less than  
109 pairs  of walks. As a precaut ion ,  we did our  runs with three different 

p s e u d o - r a n d o m - n u m b e r  genera tors  ( P R N G s ) :  all were l inear  congruent ia l  
genera tors  (53~ of the form 

~nq-1 = (aXn -~- C) m o d  rn (4.1) 

with the fol lowing paramete rs :  

P R N G I :  m = 2 4 8  , a = 3 1 1 6 7 2 8 5 ,  c = l  

P R N G  II:  m = 248, a = 3581664053, c = 1 

P R N G I I I :  m = 2 6 a ,  a = 3 1 0 2 6 x 2 3 2 + 2 1 5 9 7 ,  c = l  

These genera tors  were chosen on the basis of  their  excellent scores on the 
spectral  test(S3): see ref. 53, p. 102 for genera to r  I, and  ref. 54 for genera tors  

I I  and  III.  As a check for subtle  defects of these P R N G s  (or compi le r  bugs 
or  gross p r o g r a m m i n g  errors) ,  we ana lyzed  each set of  runs separately,  and  
c o m p a r e d  the results. All  pairs  of runs agree within at  mos t  2 s t anda rd  
devia t ions  for all values of Nmin, except  tha t  genera tors  I I  and  I I I  disagree 
by 2.1-2.3 s t a n d a r d  devia t ions  for Nmi n ~---1500, 1600, 1700. We are there- 
fore satisfied tha t  none  of our  runs  suffer from a s tat is t ical ly significant bias 
due to a defective P R N G .  The results presented  be low are based  on the 
merged  da t a  from all of our  runs. 

In  Table  II  we give our  raw da t a  for (1og,A/')obs as a funct ion of 
Nmin, a long  with the co r r e spond ing  es t imates  (2. We also repor t  how m a n y  
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Tab le  II. R a w  D a t a  f o r / =  2 as a F u n c t i o n  of  Nml n a 

Nmin 

Number of pairs 
survived 
( • 106) (log ~1 ,p ) ob~ g2 

0 
102 
200 
300 
4O0 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 
3800 

999.0 
39.9 6.0969 0.62026 (0.00012) 
26.0 6.7214 0.62091 (0.00016) 
20.0 7.0893 0.62144 (0.00019 ) 
16.6 7.3461 0.62192 (0.00022) 
14.3 7.5430 0.62198 (0.00024) 
12.7 7.7020 0.62221 (0.00026) 
11.5 7.8349 0.62253 (0.00028) 
10.5 7.9492 0.62259 (0.00030) 
9.7 8.0494 0.62255 (0.00032) 
9.0 8.1383 0.62247 (0.00034) 
8.4 8.2181 0.62246 (0.00036) 
7.9 8.2903 0.62268 (0.00037) 
7.5 8.3564 0.62282 (0.00039) 
7.1 8.4172 0.62284 (0.00041) 
6.8 8.4736 0.62288 (0.00042) 
6.5 8.5261 0.62281 (0.00044) 
6.2 8.5749 0.62313 (0.00046) 
6.0 8.6208 0.62327 (0.00047) 
5.8 8.6639 0.62347 (0.00049) 
5.5 8.7048 0.62349 (0.00050) 
5.4 8.7434 0.62365 (0.00052) 
5.2 8,7802 0.62363 (0.00053) 
5.0 8.8151 0.62382 (0:00055) 
4.9 8.8484 0.62380 (0.00056) 
4.7 8.8802 0.62400 (0.00058) 
4.6 8.9107 0.62399 (0.00059) 
4.5 8.9400 0,62398 (0.00061) 
4.3 8.9680 0.62410 (0.00062) 
4.2 8.9949 0.62424 (0.00064) 
4.1 9.0210 0.62414 (0.00065) 
4.0 9.0460 0.62421 (0.00067) 
3.9 9.0703 0.62403 (0.00068) 
3.8 9.0938 0.62383 (0.00070) 
3.7 9.1164 0.62373 (0.00071) 
3.7 9.1382 0.62385 (0.00073) 
3.6 9.1596 0.62352 (0.00074) 
3.5 9.1801 0.62354 (0.00076) 
3.4 9.2001 0.62361 (0.00077) 

~ bar on (2 is 
~2 = 5/8 = 0.625. 

_+ one standard deviation. Conformal-invariance prediction is 

Table continued 
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Number of pairs 
survived 

Nmi n ( • 106) (log JV')obs G 

3900 3.4 9.2193 0.62387 (0.00079) 
4000 3.3 9.2381 0.62388 (0.00080) 
4100 3.2 9.2564 0.62401 (0.00082) 
4200 3.2 9.2741 0.62424 (0.00083) 
4300 3.1 9.2916 0.62393 (0.00085) 
4400 3.1 9.3085 0.62404 (0.00086) 
4500 3.0 9.3251 0.62372 (0.00088) 
4600 2.9 9.3411 0.62386 (0.00089) 
4700 2.9 9.3568 0.62408 (0.00091) 
4800 2.8 9.3721 0.62413 (0.00092) 
4900 2.8 9.3871 0.62400 (0.00094) 
5000 2.8 9.4017 0.62412 (0.00095) 
5100 2.7 9.4161 0.62395 (0.00097) 
5200 2.7 9.4301 0.62398 (0.00098) 
5300 2.6 9.4437 0.62440 (0.00100) 
5400 2.6 9.4571 0.62451 (0.00101) 
5500 2.5 9.4703 0.62439 (0.00103) 
5600 2.5 9.4832 0.62423 (0.00105) 
5700 2.5 9.4959 0.62396 (0.00106) 
5800 2.4 9.5083 0.62410 (0.00108) 
5900 2.4 9.5204 0.62422 (0.00109) 
6000 2.4 9.5323 0.62421 (0.00111 ) 

of the 999 x 10 6 init ial  pairs  of walks survived to the given length. These 
raw da t a  m a y  be of  use to researchers  who wish to do  runs of their  own, 
or  who wish to reanalyze  our  runs (e.g., using o ther  me thods  to handle  
correc t ions  to scaling). 

In  Fig. 1 we plot  C2, together  with its one - s t anda rd -dev ia t i on  er ror  
bar,  as a funct ion of Nml n. Stat is t ical ly significant correc t ions  to scaling are 
observed  until  at  least  Nmin = 2000. F o r  Nmin > 2500, (2 is cons tan t  within 
er ror  bars.  We  therefore take  (2(Nm~, = 2500) as our  "best  es t imate"  of ~2, 
and  set the sys temat ic  e r ror  bars  (95 % subject ive confidence l imits)  so as 
to encompass  the centra l  value at  any  Nr~in between 2000 and  5000. The 
stat is t ical  e r ror  ba r  (classical 9 5 %  confidence l imits)  is t aken  to be 1.96 
t imes the s t anda rd  dev ia t ion  at  Nmin = 2500. The  result  is 

~2 = 0.6240 • 0.0005 4- 0.0011 (4.2) 

where the first e r ror  ba r  represents  sys temat ic  e r ror  and  the second er ror  
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Fig. 1. Estimator (2 versus Nmi ~. Error bar is _+ one standard deviation. The predicted exact 
value ~2 = 5/8 is indicated by the horizontal line. 

bar represents statistical error. This result is in good agreement with the 
conformal-invariance prediction (2 = 5/8 = 0.625. 

A closer analysis shows that the corrections to scaling for 100~< 
04 Nmi, < 1500 are very roughly proportional to 1/Nmi .. We therefore tried 

fits to the form (3.16), using the one-parameter maximum-likelihood 
method with a variety of fixed values of A and a. For  (A, a) = (0.4, -0 .15)  
and (0.5, - 0 . 2 )  we obtained estimates (2 that are reasonably flat as a func- 
tion of Nmi~ in the range 100~<Nrni, ~ 1600: these estimates are ~0.6246 
and ~0.6240, respectively. We wish to emphasize that these pairs (A, a) 
should not be considered to be estimates of the correction-to-scaling expo- 
nent A1 and its amplitude bo/ao as defined in (3.15). Rather, they define 
only an empirical effective exponent and amplitude that fit the data 
reasonably well in a particular nonasymptotic range of N; they do this 
quite possibly by mimicking a combination of correction-to-scaling terms as 
shown in (3.15). For the same reason, we do not consider these "corrected" 
estimates of ~2 to be any more accurate or reliable than the "primitive" 
estimate (4.2). All we can say is that the data appear to require at least one 
correction-to-scaling exponent A ~ 0.4-0.5 or smaller. 

The parameters of our l =  3 runs are shown in Table III; in all cases 
we took X 1 ~- - - (0 ,  1), x2 = ( - 1 ,  0), X 3 = (1, - 1 ) ,  and Nmax = 50,000.  In total 
we generated slightly more than 4 x 109 triplets of walks. The CPU time 
per iteration is much smaller for l = 3 than for l = 2, because the l = 3 walks 
die much sooner. Separate analyses of the runs showed no statistically 
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Table III. Parameters of Our  Runs wi th  1 = 3  a 

Number of triplets 
Machine ( • 106) P R N G  C P U  time/triplet 

Astronautics ZS-2 1592 II  1.15 msec 
Convex C-1 870 I I I  0.86 msec 

Convex C-210 1748 I I I  0.32 msec 

In  all cases we took x l = (0, 1), x2 = ( -  1, 0), x 3 = (1, - 1  ), and  Nma x = 50000. Note that the 
mean C P U  time per triplet is rather weakly dependent on N . . . .  because ~3 > 1 [Eq.  (3.5)].  

significant differences; the results presented below are based on the merged 
data from all runs. 

In Table IV we give our raw data for ( log Y)obs  as a function of 
Nmin, along with the corresponding estimates (3. We also report how many 
of the 4210 x 10  6 initial triplets of walks survived to the given length (note 
that very few did!). In Fig. 2 we plot (3, together with its one-standard- 
deviation error bar, as a function of Nmin. Statistically significant correc- 
tions to scaling are observed until about Nmin = 1000, after which (3 is 
essentially constant within error bars. The value at Nmin = 1000 is almost 
exactly equal to the predicted value 35/24, but this is pure coincidence. A 
fairer choice is to select our "best estimate" and systematic error bars (95 % 
subjective confidence limits) so as to encompass the central value at any 

1 . 4 8 ~  

1475~- 

1 47 

1'465 i 

146 ~ T T 

1.45 

1 
0 1000 2000 3000 4000 5000 6000 

NmEn 

Fig. 2. Estimator (3 versus Nmi n. Error bar is - one standard deviation. The predicted exact 
value ~'3 = 35/24 is indicated by the horizontal line. 
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Table IV. Raw Data f o r / =  3 as a Funct ion of Nml n ~ 

Umin 

Number of triplets 
survived 
( X 106) (log , f  ) obs t~3 

0 4210.000 
102 18.381 5.3088 1.45023 (0.00034) 
200 6.904 5.9820 1.45347 (0.00056) 
300 3.827 6.3866 1.45451 (0.00076) 
400 2.518 6.6727 1.45606 (0.00094) 
500 1.818 6.8947 1.456t9 (0.00111) 
600 1.393 7.0758 1.45620 (0.00128) 
700 1.113 7.2282 1.45710 (0.00144) 
800 0.916 7.3603 1.45700 (0.00160) 
900 0.771 7.4767 1.45671 (0.00175) 

1000 0.661 7.5799 1.45830 (0.00190) 
1100 0.575 7.6738 1.45812 (0.00205) 
1200 0.506 7.7596 1.45713 (0.00220) 
1300 0.450 7.8385 1.45590 (0.00234) 
1400 0.403 7.9112 1.45533 (0.00249) 
1500 0.364 7.9789 1.45451 (0~00264) 
1600 0.332 8.0405 1.45768 (0.00278) 
1700 0.304 8.0990 1.45883 (0.00292) 
1800 0.279 8.1547 1.45821 (0.00306) 
1900 0.258 8.2073 1.45761 (0.00321) 
2000 0.239 8.2568 1.45799 (0.00335) 
2100 0.223 8.3040 1.45761 (0.00349) 
2200 0.208 8.3489 1.45743 (0.00363) 
2300 0.195 8.3912 1.45839 (0.00377) 
2400 0.183 8.4322 1.45796 (0.00392) 
2500 0.172 8.4710 1.45885 (0.00406) 
2600 0.163 8.5083 1.45925 (0.00420) 
2700 0.154 8.5439 1.46045 (0.00434) 
2800 0.146 8.5791 1.45862 (0.00449) 
2900 0.138 8.6132 1.45647 (0.00464) 
3000 0.131 8.6449 1.45745 (0.00478) 
3100 0.125 8.6762 1.45670 (0.00492) 
3200 0.119 8.7057 1.45831 (0.00507) 
3300 0.114 8.7345 1.45876 (0:00521) 
3400 0.109 8.7622 1.46002 (0.00536) 
3500 0.105 8.7895 1.45956 (0.00550) 
3600 0.100 8.8161 1.45898 (0.00565) 
3700 0.096 8.8410 1.46142 (0.1)0579) 
3800 0.093 8.8652 1.46343 (0.00594) 

a Error bar on (3 is 
~3 = 35/24 = 1.458333 .... 

+ one standard deviation. Conformal-invariance prediction is 

Table continued 
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Number oftriplets 
survived 

Nmin ( • 10 6) ~ logY)obs  3 

3900 0.089 8.8889 1.46520 (0.00608) 
4000 0.086 8.9128 1.46420 (0.00624) 
4100 0.083 8.9356 1.46439 (0.00639) 
4200 0.080 8.9573 1.46659 (0.00653) 
4300 0.077 8.9791 1.46640 (0.00668) 
4400 0.075 8.9999 1.46811 (0.00683) 
4500 0.072 9.0200 1.46993 (0.00698) 
4600 0.070 9.0405 1.46895 (0.00714) 
4700 0.068 9.0598 1.47070 (0.00729) 
4800 0.065 9.0799 1.46785 (0.00745) 
4900 0.063 9.0987 1.46794 (0.00760) 
5000 0.061 9.1170 1.46847 (0.00776) 
5100 0.060 9.1346 1.47043 (0.00791) 
5200 0.058 9.1527 1.46856 (0.00807) 
5300 0.056 9.1697 1.46959 (0.00823) 
5400 0.055 9.1868 1.46919 (0.00839) 
5500 0.053 9.2033 1.46946 (0.00855) 
5600 0.052 9.2198 1.46842 (0.00871) 
5700 0.050 9.2361 1.46734 (0.00888) 
5800 0.049 9.2522 1.46535 (0.00905) 
5900 0.048 9.2679 1.46388 (0.00922) 
6000 0.046 9.2825 1.46573 (0.00938) 

Nmin between 1000 and  3500. The stat is t ical  e r ror  ba r  (classical 9 5 %  
confidence l imits)  is t aken  to be 1.96 t imes the s t anda rd  devia t ion  at  
Nmin = 1500. The result  is 

~3 = 1.4575 _+ 0.0030 ___ 0.0052 (4.3) 

where the format  is as before. This result  is in good  agreement  with the 
conformal - invar iance  pred ic t ion  ~3 = 35/24 = 1.458333 .... 

O u r  e r ror  bars  for ~3 are  five t imes as large as those for ~2, in spite 
of a sample  four t imes as large; this is because very few tr iplets  of walks 
survive to Nmi n = 1000. In par t icular ,  the s tat is t ical  errors  a p p e a r  to be too  
large to pe rmi t  a meaningful  analysis  of  cor rec t ions  to scaling. 

5. D I S C U S S I O N  

In summary ,  our  M o n t e  Car lo  d a t a  agree well with the conformal -  
invar iance  pred ic t ions  ~2 = 5/8 and  ~3 = 35/24, provided that  one considers  
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only walks of length ~>1000-2000. Shorter walks are subject to strong 
corrections to scaling, leading to apparent exponents ~2.er~ and ~3.eff that dif- 
fer from the predicted exact values by 2 0 ~ 0  standard deviations. In part 
these large discrepancies are due to the (apparently) small value of the 
correction-to-scaling exponent A ~ 0.4-0.5, which induces a very slow con- 
vergence to the N---, ~ limit; and in part they are due to the extraordinary 
statistical precision with which we are able to measure critical exponents 
(standard deviation of 0.0001 for (2 at Nmi n = 102). 

It is worth comparing these results to the earlier Monte Carlo work 
of Duplantier and Kwon (2~ and Burdzyet  a/. (6) Duplantier and Kwon 
measured pt(N)  by making separate simulations for various values of N up 
to about 70, generating about  6 x 105 samples per run. They then estimated 
~t from the ratios p t ( N ) / p t ( N - 2 0 )  for 40 ~< N~< 70. For l =  2, 3 they found 

~2 ~- 0.622 + 0.004 

if3 = 1.457 + 0.003 

where no distinction is made between systematic and statistical error, and 
the error bars are presumably intended to be one standard deviation. This 
result for ~2 is at least roughly consistent with our estimate for Nmin = 102, 
and possibly also with the extrapolation of our estimates to Nmi n ~ 25 50.13 

The estimate for ~3 is, however, only barely consistent with our estimate for 
Nmin = 102, and inconsistent with the extrapolation of our estimates to 
Nmin ~ 25-50. It seems that Duplantier and Kwon were very lucky in that 
the statistical errors happened in both cases to be opposite in sign (and 
comparable in magnitude) to the systematic error induced by corrections 
to scaling. 

Burdzy et al. generated 3 • 106 pairs of random walks of length 500, 
from which they deduced p2(N) for N~< 500. They then estimated if2 from 
the ratios pz(N2)/pz(N1) for various pairs (NI, N2) ranging from (50, 70) 
[in order to compare with Duplan t ie r -Kwon]  to (450, 499). They found 

N 1 = 50, N 2 = 7 0 :  ~2 = 0.610 ----- 0.008 

N1=70 ,  N2=100:  ~2=0.613•  

N1 = 100, N 2 = 150: ~2 = 0.613 +_ 0.009 

~3 Note that our estimate for Nmi n ~ 102 is based on walks of all lengths from 102 to 50,000. 
In fact, as can be seen from Table II, half of these walks survived to N = 300, and a quarter 
survived to N= 800. Therefore, this estimate should not be compared with a Duplantier- 
Kwon-type estimate for N= i00; rather, it corresponds to something more like N~ 300. 
Alternatively, a Duplantier-Kwon-type estimate for N=70 might correspond to an 
estimate by our method with Nmi n ~ 25-50. 
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N 1 = 150, N2 =200: ~'2 = 0.612_+ 0.011 

N1 = 200, N2 = 250: if2 = 0.617 + 0.014 

NI = 250, N2 = 300: ~2 = 0.623 + 0.016 

N 1 = 300, N 2 = 350: ~2 = 0.635 + 0.018 

N1 = 350, N2 = 400: ~2 = 0.613 + 0.019 

N1 = 400, N2 = 450: ~'2 = 0.591 + 0.021 

N1 = 450, N2 = 499: ~'2 = 0.615 + 0.024 

where the error bars are classical 95 % confidence intervals (statistical error 
only) derived from the binomial distribution. These results are qualitatively 
and quantitatively consistent with ours, though the error bars are about 
30-50 times bigger. 14 In particular, they show a rough trend toward 
increasing estimates of ~2 with increasing (N1, N2). The result for 
(N1, N2) = (50, 70) is barely consistent with that of Duplantier and Kwon, 
but without the fortuitous cancellation of systematic and statistical errors. 

With the very high statistical precision of the present study, one can 
now see clearly the corrections to scaling for Nmi~<2000, and the 
approach toward the conformal-invariance predictions for Nmin>2000. 
While we cannot assert definitively that the conformal-invariance predic- 
tions are correct, our results are most definitely consistent with those 
predictions, to a numerical accuracy of better than 0.002 for ~'2 and about 
0.008 for ~3. Since conformal-invariance predictions are supposed to be 
either exact or else grossly wrong--they cannot give answers that are 
approximately correct, except by mere coincidence--such a close numerical 
correspondence is in fact strong evidence that the conformal-invariance 
prediction (1.8) is exact. 

But many aspects of the Duplant ier -Saleur-Kwon Ansatz are still very 
mysterious. What  is the meaning of exponents taken from the Kac table 
(2.13) with r, s outside the minimal block (2.16)? What  is the meaning of 
the half-integer values of r, s that arise in the corresponding problem for 
self-avoiding walks? And can the observed correction-to-scaling exponent 
A ~ 0.44).5 be explained by conformal-invariance methods? We do not feel 
qualified to answer these questions, but we do think that their resolution 
is likely to lead to new insights into two-dimensional conformal invariance 
in statistical mechanics. 

14 Our smaller error bars are due partly to the fact that we generated about 330 times as many 
walks as Burdzy et  al. (this accounts for a factor ~ 18 in the error bars), and partly to our 
use of the maximum-likelihood method with a large Nma x (which corresponds in the 
Burdzy et al. method to a much larger value of N 2 / N  ~ than they took). 
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A P P E N D I X .  O P T I M A L  C H O I C E  OF/Vma x 

In this Appendix we work out the optimal choice of N . . . . .  assuming 
that ~t< 1. (If ~z> 1, there is little harm in taking Nmax = ~ . )  We take the 
following point of view: First Nmi n is chosen so that the correction-to- 
scaling terms in (3.15) are adequately small for N ) N m i  n. (How small 
is "adequately small" depends on a somewhat subjective tradeoff of 
systematic error versus statistical error.) Then, with Nmi,~ fixed, we choose 
Nm,x so as to optimize the statistical efficiency of the algorithm, that is, 
to minimize the variance-time product 

var(~t) x ( C P U  time) 

~ rain(N, Nma~) ql(N) 

(a.I) 
(n'/n)var(log X ) (  N~ d 2 Nm~ N_(1+~)-1  

,U_~Nr, i~ lOg ~-' 
N = Nmin 

[-see (3.4), (3.5), (3.10), (3.13), and (3.14)], where to lighten the notation 
we write ff in place of fit. Let us first work on the numerator, splitting it as 

rain(N, Xmax) ql(N) 
N = I  

Nsubmin 1 Nmax o~ 

= ~ Nq,(N)+ ~ Nq,(N)+ ~ Nma~q,(N) (A.2) 
N = 1 N = Nsubmin N -- Nmax + 1 

where Nsubmin is chosen so that qt(N)~" N (1 +~) holds at least very roughly 
for N >~ Xsubmin. In general Nsubmin can be much smaller than Nmin ; in prac- 
tice, Nsubmin m 10 is probably fine. (The point is that we want very small 
systematic error in our estimates of critical exponents, but we are prepared 
to tolerate a much larger error, say of order 10%, in our estimates of 
computer time!) Typically Xsubmin is SO small that the first term on the right 
side of (A.2) is negligible compared to the other two terms. We therefore 
find 

VM 1 '--M'-~ N 1mall 
min(U, Nmaxlq,.V)  t L -;--7 j c o n s  X � 9  m a x  ~ '  s u b m i n  

N = l  

const • Xma x 

=const  x cd ~ (A.3) 

where we have first taken the liberty of approximating a sum by an 
integral (which is obviously valid, since Nsubmin >~ 1), next assumed that 
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(Nsubmin/Nmax)l-~l (which is valid provided that ( is not too near 1), 
and finally introduced the definition e = Nmax/Nmi n. Next we work on the 
denominator of (A.1): 

Nmax 

2 
N = Nmin 

q , (N)  ~ const x (Nmi~n - NmL ) 

= const x (1 - ~ -  ~) (A.4) 

while 

d 2 Nma x 

d~ 2 log y~ 
N = Nmi n 

N ( 1 + ~  Nmin 

1 ~ 
= ~ - -  (log 2 c~) (c~r - 1) 2 (A.5) 

Putting everything together, we need to minimize 

var((~) x ( C P U  t ime) 
(Z 1 - - (  

(1 -c~ r z -  (log 2 c~)[er r  1)23} 

p*/~(/~- 1) 
(/~ _ ~)2 _ /~  log2/~ (A.6) 

where fl = ~ .  For ( --+ 0 the optimal fl is near 1 ; expanding the denominator 
of (A.6) in powers of f l -  1, we find 

flopt = 1 -[- 3( + O((2) ~ 0{op t = e 3 + O ( ~ )  (A.7) 

For ( --+ 1 the optimal fi is near oo; expanding the denominator of (A.6) for 
large fl, we find 

[ { l o g l o g e ) l  log2e [ ( log tog e ) ]  flopt 1ogZe 1 + O \  ~ =::>0~op t - -  1 + O  
- ~ ~ \ ~ / J  

(A.8) 

where ~ -  1 -  ~. For general ~, (A.6) must be evaluated numerically; the 
results are shown in Fig. 3. It is pleasant to note that in the range 
8 < cr < 250, the variance-time product depends only very weakly on ~: any 
value in this range leads to an efficiency that is within a factor of 2 of 
optimal. So one need not lose sleep over the choice of Nmax. 
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product (A.6), normalized to its minimum value, versus 

o~ =~ Nmax/Nmin. 
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